Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38452217

RESUMO

The canonical stop codons of the nuclear genome of the trypanosomatid Blastocrithidia nonstop are recoded. Here, we investigated the effect of this recoding on the mitochondrial genome and gene expression. Trypanosomatids possess a single mitochondrion and protein-coding transcripts of this genome require RNA editing in order to generate open reading frames of many transcripts encoded as 'cryptogenes'. Small RNAs that can number in the hundreds direct editing and produce a mitochondrial transcriptome of unusual complexity. We find B. nonstop to have a typical trypanosomatid mitochondrial genetic code, which presumably requires the mitochondrion to disable utilization of the two nucleus-encoded suppressor tRNAs, which appear to be imported into the organelle. Alterations of the protein factors responsible for mRNA editing were also documented, but they have likely originated from sources other than B. nonstop nuclear genome recoding. The population of guide RNAs directing editing is minimal, yet virtually all genes for the plethora of known editing factors are still present. Most intriguingly, despite lacking complex I cryptogene guide RNAs, these cryptogene transcripts are stochastically edited to high levels.

2.
BMC Genomics ; 25(1): 184, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365628

RESUMO

BACKGROUND: Almost all extant organisms use the same, so-called canonical, genetic code with departures from it being very rare. Even more exceptional are the instances when a eukaryote with non-canonical code can be easily cultivated and has its whole genome and transcriptome sequenced. This is the case of Blastocrithidia nonstop, a trypanosomatid flagellate that reassigned all three stop codons to encode amino acids. RESULTS: We in silico predicted the metabolism of B. nonstop and compared it with that of the well-studied human parasites Trypanosoma brucei and Leishmania major. The mapped mitochondrial, glycosomal and cytosolic metabolism contains all typical features of these diverse and important parasites. We also provided experimental validation for some of the predicted observations, concerning, specifically presence of glycosomes, cellular respiration, and assembly of the respiratory complexes. CONCLUSIONS: In an unusual comparison of metabolism between a parasitic protist with a massively altered genetic code and its close relatives that rely on a canonical code we showed that the dramatic differences on the level of nucleic acids do not seem to be reflected in the metabolisms. Moreover, although the genome of B. nonstop is extremely AT-rich, we could not find any alterations of its pyrimidine synthesis pathway when compared to other trypanosomatids. Hence, we conclude that the dramatic alteration of the genetic code of B. nonstop has no significant repercussions on the metabolism of this flagellate.


Assuntos
Parasitos , Trypanosoma brucei brucei , Trypanosomatina , Animais , Códon de Terminação , Eucariotos/genética , Código Genético , Parasitos/genética , Trypanosoma brucei brucei/genética , Trypanosomatina/genética
3.
Biochim Biophys Acta Gen Subj ; 1867(9): 130419, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37451476

RESUMO

In eukaryotes, pyruvate, a key metabolite produced by glycolysis, is converted by a tripartite mitochondrial pyruvate dehydrogenase (PDH) complex to acetyl-coenzyme A, which is fed into the tricarboxylic acid cycle. Two additional enzyme complexes with analogous composition catalyze similar oxidative decarboxylation reactions albeit using different substrates, the branched-chain ketoacid dehydrogenase (BCKDH) complex and the 2-oxoglutarate dehydrogenase (OGDH) complex. Comparative transcriptome analyses of diplonemids, one of the most abundant and diverse groups of oceanic protists, indicate that the conventional E1, E2, and E3 subunits of the PDH complex are lacking. E1 was apparently replaced in the euglenozoan ancestor of diplonemids by an AceE protein of archaeal type, a substitution that we also document in dinoflagellates. Here, we demonstrate that the mitochondrion of the model diplonemid Paradiplonema papillatum displays pyruvate and 2-oxoglutarate dehydrogenase activities. Protein mass spectrometry of mitochondria reveal that the AceE protein is as abundant as the E1 subunit of BCKDH. This corroborates the view that the AceE subunit is a functional component of the PDH complex. We hypothesize that by acquiring AceE, the diplonemid ancestor not only lost the eukaryotic-type E1, but also the E2 and E3 subunits of the PDH complex, which are present in other euglenozoans. We posit that the PDH activity in diplonemids seems to be carried out by a complex, in which the AceE protein partners with the E2 and E3 subunits from BCKDH and/or OGDH.


Assuntos
Mitocôndrias , Complexo Piruvato Desidrogenase , Mitocôndrias/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Complexos Multienzimáticos/metabolismo , Complexo Cetoglutarato Desidrogenase/metabolismo , Piruvatos/metabolismo
4.
PLoS Negl Trop Dis ; 16(6): e0010510, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35749562

RESUMO

Leishmaniasis is a parasitic vector-borne disease caused by the protistan flagellates of the genus Leishmania. Leishmania (Viannia) guyanensis is one of the most common causative agents of the American tegumentary leishmaniasis. It has previously been shown that L. guyanensis strains that carry the endosymbiotic Leishmania RNA virus 1 (LRV1) cause more severe form of the disease in a mouse model than those that do not. The presence of the virus was implicated into the parasite's replication and spreading. In this respect, studying the molecular mechanisms of cellular control of viral infection is of great medical importance. Here, we report ~30.5 Mb high-quality genome assembly of the LRV1-positive L. guyanensis M4147. This strain was turned into a model by establishing the CRISPR-Cas9 system and ablating the gene encoding phosphatidate phosphatase 2-like (PAP2L) protein. The orthologue of this gene is conspicuously absent from the genome of an unusual member of the family Trypanosomatidae, Vickermania ingenoplastis, a species with mostly bi-flagellated cells. Our analysis of the PAP2L-null L. guyanensis showed an increase in the number of cells strikingly resembling the bi-flagellated V. ingenoplastis, likely as a result of the disruption of the cell cycle, significant accumulation of phosphatidic acid, and increased virulence compared to the wild type cells.


Assuntos
Leishmania guyanensis , Leishmaniose Cutânea , Parasitos , Animais , Ciclo Celular , Leishmaniavirus , Lipídeos , Camundongos , Fosfatidato Fosfatase/genética
5.
mBio ; 12(4): e0160621, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34399629

RESUMO

The closest relative of human pathogen Leishmania, the trypanosomatid Novymonas esmeraldas, harbors a bacterial endosymbiont "Candidatus Pandoraea novymonadis." Based on genomic data, we performed a detailed characterization of the metabolic interactions of both partners. While in many respects the metabolism of N. esmeraldas resembles that of other Leishmaniinae, the endosymbiont provides the trypanosomatid with heme, essential amino acids, purines, some coenzymes, and vitamins. In return, N. esmeraldas shares with the bacterium several nonessential amino acids and phospholipids. Moreover, it complements its carbohydrate metabolism and urea cycle with enzymes missing from the "Ca. Pandoraea novymonadis" genome. The removal of the endosymbiont from N. esmeraldas results in a significant reduction of the overall translation rate, reduced expression of genes involved in lipid metabolism and mitochondrial respiratory activity, and downregulation of several aminoacyl-tRNA synthetases, enzymes involved in the synthesis of some amino acids, as well as proteins associated with autophagy. At the same time, the genes responsible for protection against reactive oxygen species and DNA repair become significantly upregulated in the aposymbiotic strain of this trypanosomatid. By knocking out a component of its flagellum, we turned N. esmeraldas into a new model trypanosomatid that is amenable to genetic manipulation using both conventional and CRISPR-Cas9-mediated approaches. IMPORTANCENovymonas esmeraldas is a parasitic flagellate of the family Trypanosomatidae representing the closest insect-restricted relative of the human pathogen Leishmania. It bears symbiotic bacteria in its cytoplasm, the relationship with which has been established relatively recently and independently from other known endosymbioses in protists. Here, using the genome analysis and comparison of transcriptomic profiles of N. esmeraldas with and without the endosymbionts, we describe a uniquely complex cooperation between both partners on the biochemical level. We demonstrate that the removal of bacteria leads to a decelerated growth of N. esmeraldas, substantial suppression of many metabolic pathways, and increased oxidative stress. Our success with the genetic transformation of this flagellate makes it a new model trypanosomatid species that can be used for the dissection of mechanisms underlying the symbiotic relationships between protists and bacteria.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Genoma Bacteriano , Simbiose/genética , Trypanosoma/metabolismo , Trypanosoma/microbiologia , Bactérias/classificação , Genômica , Filogenia , Trypanosoma/classificação
6.
Genes (Basel) ; 12(3)2021 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804709

RESUMO

While numerous genomes of Leishmania spp. have been sequenced and analyzed, an understanding of the evolutionary history of these organisms remains limited due to the unavailability of the sequence data for their closest known relatives, Endotrypanum and Porcisia spp., infecting sloths and porcupines. We have sequenced and analyzed genomes of three members of this clade in order to fill this gap. Their comparative analyses revealed only minute differences from Leishmaniamajor genome in terms of metabolic capacities. We also documented that the number of genes under positive selection on the Endotrypanum/Porcisia branch is rather small, with the flagellum-related group of genes being over-represented. Most significantly, the analysis of gene family evolution revealed a substantially reduced repertoire of surface proteins, such as amastins and biopterin transporters BT1 in the Endotrypanum/Porcisia species when compared to amastigote-dwelling Leishmania. This reduction was especially pronounced for δ-amastins, a subfamily of cell surface proteins crucial in the propagation of Leishmania amastigotes inside vertebrate macrophages and, apparently, dispensable for Endotrypanum/Porcisia, which do not infect such cells.


Assuntos
Proteínas de Membrana/genética , Trypanosomatina/classificação , Sequenciamento Completo do Genoma/métodos , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Leishmania/classificação , Leishmania/genética , Leishmania major/classificação , Leishmania major/genética , Filogenia , Proteínas de Protozoários/genética , Trypanosomatina/genética , Virulência
7.
Pathogens ; 10(1)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466586

RESUMO

A recently redescribed two-flagellar trypanosomatid Vickermania ingenoplastis is insensitive to the classical inhibitors of respiration and thrives under anaerobic conditions. Using genomic and transcriptomic data, we analyzed its genes of the core metabolism and documented that subunits of the mitochondrial respiratory complexes III and IV are ablated, while those of complexes I, II, and V are all present, along with an alternative oxidase. This explains the previously reported conversion of glucose to acetate and succinate by aerobic fermentation. Glycolytic pyruvate is metabolized to acetate and ethanol by pyruvate dismutation, whereby a unique type of alcohol dehydrogenase (shared only with Phytomonas spp.) processes an excess of reducing equivalents formed under anaerobic conditions, leading to the formation of ethanol. Succinate (formed to maintain the glycosomal redox balance) is converted to propionate by a cyclic process involving three enzymes of the mitochondrial methyl-malonyl-CoA pathway, via a cyclic process, which results in the formation of additional ATP. The unusual structure of the V. ingenoplastis genome and its similarity with that of Phytomonas spp. imply their relatedness or convergent evolution. Nevertheless, a critical difference between these two trypanosomatids is that the former has significantly increased its genome size by gene duplications, while the latter streamlined its genome.

8.
BMC Biol ; 18(1): 23, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32122335

RESUMO

BACKGROUND: The Euglenozoa are a protist group with an especially rich history of evolutionary diversity. They include diplonemids, representing arguably the most species-rich clade of marine planktonic eukaryotes; trypanosomatids, which are notorious parasites of medical and veterinary importance; and free-living euglenids. These different lifestyles, and particularly the transition from free-living to parasitic, likely require different metabolic capabilities. We carried out a comparative genomic analysis across euglenozoan diversity to see how changing repertoires of enzymes and structural features correspond to major changes in lifestyles. RESULTS: We find a gradual loss of genes encoding enzymes in the evolution of kinetoplastids, rather than a sudden decrease in metabolic capabilities corresponding to the origin of parasitism, while diplonemids and euglenids maintain more metabolic versatility. Distinctive characteristics of molecular machines such as kinetochores and the pre-replication complex that were previously considered specific to parasitic kinetoplastids were also identified in their free-living relatives. Therefore, we argue that they represent an ancestral rather than a derived state, as thought until the present. We also found evidence of ancient redundancy in systems such as NADPH-dependent thiol-redox. Only the genus Euglena possesses the combination of trypanothione-, glutathione-, and thioredoxin-based systems supposedly present in the euglenozoan common ancestor, while other representatives of the phylum have lost one or two of these systems. Lastly, we identified convergent losses of specific metabolic capabilities between free-living kinetoplastids and ciliates. Although this observation requires further examination, it suggests that certain eukaryotic lineages are predisposed to such convergent losses of key enzymes or whole pathways. CONCLUSIONS: The loss of metabolic capabilities might not be associated with the switch to parasitic lifestyle in kinetoplastids, and the presence of a highly divergent (or unconventional) kinetochore machinery might not be restricted to this protist group. The data derived from the transcriptomes of free-living early branching prokinetoplastids suggests that the pre-replication complex of Trypanosomatidae is a highly divergent version of the conventional machinery. Our findings shed light on trends in the evolution of metabolism in protists in general and open multiple avenues for future research.


Assuntos
Evolução Biológica , Euglenozoários/genética , Genoma de Protozoário , Euglênidos/genética , Euglênidos/metabolismo , Euglenozoários/metabolismo , Evolução Molecular , Kinetoplastida/genética , Kinetoplastida/metabolismo
9.
BMC Genomics ; 20(1): 726, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31601168

RESUMO

BACKGROUND: Trypanosomatids of the genus Leishmania are parasites of mammals or reptiles transmitted by bloodsucking dipterans. Many species of these flagellates cause important human diseases with clinical symptoms ranging from skin sores to life-threatening damage of visceral organs. The genus Leishmania contains four subgenera: Leishmania, Sauroleishmania, Viannia, and Mundinia. The last subgenus has been established recently and remains understudied, although Mundinia contains human-infecting species. In addition, it is interesting from the evolutionary viewpoint, representing the earliest branch within the genus and possibly with a different type of vector. Here we analyzed the genomes of L. (M.) martiniquensis, L. (M.) enriettii and L. (M.) macropodum to better understand the biology and evolution of these parasites. RESULTS: All three genomes analyzed were approximately of the same size (~ 30 Mb) and similar to that of L. (Sauroleishmania) tarentolae, but smaller than those of the members of subgenera Leishmania and Viannia, or the genus Endotrypanum (~ 32 Mb). This difference was explained by domination of gene losses over gains and contractions over expansions at the Mundinia node, although only a few of these genes could be identified. The analysis predicts significant changes in the Mundinia cell surface architecture, with the most important ones relating to losses of LPG-modifying side chain galactosyltransferases and arabinosyltransferases, as well as ß-amastins. Among other important changes were gene family contractions for the oxygen-sensing adenylate cyclases and FYVE zinc finger-containing proteins. CONCLUSIONS: We suggest that adaptation of Mundinia to different vectors and hosts has led to alternative host-parasite relationships and, thereby, made some proteins redundant. Thus, the evolution of genomes in the genus Leishmania and, in particular, in the subgenus Mundinia was mainly shaped by host (or vector) switches.


Assuntos
Perfilação da Expressão Gênica/métodos , Leishmania/classificação , Proteínas de Protozoários/genética , Sequenciamento Completo do Genoma/métodos , Evolução Molecular , Regulação da Expressão Gênica , Tamanho do Genoma , Genômica , Especificidade de Hospedeiro , Leishmania/genética , Filogenia , Ploidias , Sequenciamento do Exoma
10.
Parasitology ; 146(1): 1-27, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29898792

RESUMO

Unicellular flagellates of the family Trypanosomatidae are obligatory parasites of invertebrates, vertebrates and plants. Dixenous species are aetiological agents of a number of diseases in humans, domestic animals and plants. Their monoxenous relatives are restricted to insects. Because of the high biological diversity, adaptability to dramatically different environmental conditions, and omnipresence, these protists have major impact on all biotic communities that still needs to be fully elucidated. In addition, as these organisms represent a highly divergent evolutionary lineage, they are strikingly different from the common 'model system' eukaryotes, such as some mammals, plants or fungi. A number of excellent reviews, published over the past decade, were dedicated to specialized topics from the areas of trypanosomatid molecular and cell biology, biochemistry, host-parasite relationships or other aspects of these fascinating organisms. However, there is a need for a more comprehensive review that summarizing recent advances in the studies of trypanosomatids in the last 30 years, a task, which we tried to accomplish with the current paper.


Assuntos
Evolução Biológica , Regulação da Expressão Gênica , Genoma de Protozoário , Filogenia , Trypanosomatina , Animais , Regulação da Expressão Gênica/genética , Humanos , Trypanosomatina/classificação , Trypanosomatina/genética , Trypanosomatina/metabolismo
11.
Cell Rep ; 25(3): 537-543.e3, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332635

RESUMO

Naegleria gruberi is a free-living non-pathogenic amoeboflagellate and relative of Naegleria fowleri, a deadly pathogen causing primary amoebic meningoencephalitis (PAM). A genomic analysis of N. gruberi exists, but physiological evidence for its core energy metabolism or in vivo growth substrates is lacking. Here, we show that N. gruberi trophozoites need oxygen for normal functioning and growth and that they shun both glucose and amino acids as growth substrates. Trophozoite growth depends mainly upon lipid oxidation via a mitochondrial branched respiratory chain, both ends of which require oxygen as final electron acceptor. Growing N. gruberi trophozoites thus have a strictly aerobic energy metabolism with a marked substrate preference for the oxidation of fatty acids. Analyses of N. fowleri genome data and comparison with those of N. gruberi indicate that N. fowleri has the same type of metabolism. Specialization to oxygen-dependent lipid breakdown represents an additional metabolic strategy in protists.


Assuntos
Encéfalo/metabolismo , Genômica/métodos , Lipídeos/fisiologia , Naegleria fowleri/genética , Naegleria/metabolismo , Oxigênio/metabolismo , Proteínas de Protozoários/metabolismo , Encéfalo/parasitologia , Genoma de Protozoário , Glucose/metabolismo , Humanos , Naegleria/genética , Naegleria/crescimento & desenvolvimento , Proteínas de Protozoários/genética
12.
Curr Genomics ; 19(2): 150-156, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29491743

RESUMO

BACKGROUND: Leptomonas pyrrhocoris is a parasite of the firebug Pyrrhocoris apterus. This flagellate has been recently proposed as a model species for studying different aspects of the biology of monoxenous trypanosomatids, including host - parasite interactions. During its life cycle L. pyrrhocoris never tightly attaches to the epithelium of the insect gut. In contrast, its dixenous relatives (Leishmania spp.) establish a stable infection via attachment to the intestinal walls of their insect hosts. MATERIAL AND METHODS: This process is mediated by chemical modifications of the cell surface lipophosphoglycans. In our study we tested whether the inability of L. pyrrhocoris to attach to the firebug's midgut is associated with the absence of these glycoconjugates. We also analyzed evolution of the proteins involved in proper lipophosphoglycan assembly, cell attachment and establishment of a stable infection in L. pyrrhocoris, L. seymouri, and Leishmania spp. Our comparative analysis demonstrated differences in SCG/L/R repertoire between the two parasite subgenera, Leishmania and Viannia, which may be related to distinct life strategies in various Leishmania spp. The genome of L. pyrrhocoris encodes 6 SCG genes, all of which are quite divergent from their orthologs in the genus Leishmania. Using direct probing with an antibody recognizing the ß-Gal side chains of lipophosphoglycans, we confirmed that these structures are not synthesized in L. pyrrhocoris. CONCLUSION: We conclude that either the SCG enzymes are not active in this species (similarly to SCG5/7 in L. major), or they possess a different biochemical activity.

13.
Physiol Genomics ; 49(9): 462-472, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28698229

RESUMO

Mammalian hibernation is characterized by metabolic rate depression and a strong decrease in core body temperature that together create energy savings such that most species do not have to eat over the winter months. Brown adipose tissue (BAT), a thermogenic tissue that uses uncoupled mitochondrial respiration to generate heat instead of ATP, plays a major role in rewarming from deep torpor. In the present study we developed a label-free liquid chromatography mass spectrometry (LC-MS) strategy to investigate both differential protein expression and protein phosphorylation in BAT extracts from euthermic vs. hibernating ground squirrels (Ictidomys tridecemlineatus). In particular, we incorporated the filter-assisted sample preparation protocol, which provides a more in-depth analysis compared with gel-based and other LC-MS proteomics approaches. Surprisingly, mitochondrial membrane and matrix protein expression in BAT was largely constant between active euthermic squirrels and their hibernating counterparts. Validation by immunoblotting confirmed that the protein levels of mitochondrial respiratory chain complexes were largely unchanged in hibernating vs. euthermic animals. On the other hand, phosphoproteomics revealed that pyruvate dehydrogenase (PDH) phosphorylation increased during squirrel hibernation, confirmed by immunoblotting with phospho-specific antibodies. PDH phosphorylation leads to its inactivation, which suggests that BAT carbohydrate oxidation is inhibited during hibernation. Phosphorylation of hormone-sensitive lipase (HSL) was also found to increase during hibernation, suggesting that HSL would be active in BAT to produce the fatty acids that are likely the primary fuel for thermogenesis upon arousal. Increased perilipin phosphorylation along with that of a number of other proteins was also revealed, emphasizing the importance of protein phosphorylation as a regulatory mechanism during mammalian hibernation.


Assuntos
Tecido Adiposo Marrom/metabolismo , Hibernação/fisiologia , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Sciuridae/fisiologia , Animais , Cromatografia Líquida , Masculino , Fosfopeptídeos/metabolismo , Fosforilação , Proteômica , Espectrometria de Massas em Tandem
14.
J Virol ; 91(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28446680

RESUMO

Vilyuisk human encephalitis virus (VHEV) is a picornavirus related to Theiler's murine encephalomyelitis virus (TMEV). VHEV was isolated from human material passaged in mice. Whether this VHEV is of human or mouse origin is therefore unclear. We took advantage of the species-specific activity of the nonstructural L* protein of theiloviruses to track the origin of TMEV isolates. TMEV L* inhibits RNase L, the effector enzyme of the interferon pathway. By using coimmunoprecipitation and functional RNase L assays, the species specificity of RNase L antagonism was tested for L* from mouse (DA) and rat (RTV-1) TMEV strains as well as for VHEV. Coimmunoprecipitation and functional assay data confirmed the species specificity of L* activity and showed that L* from rat strain RTV-1 inhibited rat but not mouse or human RNase L. Next, we showed that the VHEV L* protein was phylogenetically related to L* of mouse viruses and that it failed to inhibit human RNase L but readily antagonized mouse RNase L, unambiguously showing the mouse origin of VHEV.IMPORTANCE Defining the natural host of a virus can be a thorny issue, especially when the virus was isolated only once or when the isolation story is complex. The species Theilovirus includes Theiler's murine encephalomyelitis virus (TMEV), infecting mice and rats, and Saffold virus (SAFV), infecting humans. One TMEV strain, Vilyuisk human encephalitis virus (VHEV), however, was isolated from mice that were inoculated with cerebrospinal fluid of a patient presenting with chronic encephalitis. It is therefore unclear whether VHEV was derived from the human sample or from the inoculated mouse. The L* protein encoded by TMEV inhibits RNase L, a cellular enzyme involved in innate immunity, in a species-specific manner. Using binding and functional assays, we show that this species specificity even allows discrimination between TMEV strains of mouse and of rat origins. The VHEV L* protein clearly inhibited mouse but not human RNase L, indicating that this virus originates from mice.


Assuntos
Vírus da Encefalite/genética , Vírus da Encefalite/fisiologia , Endorribonucleases/antagonistas & inibidores , Picornaviridae/genética , Picornaviridae/fisiologia , Especificidade da Espécie , Proteínas não Estruturais Virais/metabolismo , Animais , Humanos , Camundongos , Ratos
15.
PLoS One ; 12(3): e0174165, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28328988

RESUMO

In the present work, we investigated molecular mechanisms governing thermal resistance of a monoxenous trypanosomatid Crithidia luciliae thermophila, which we reclassified as a separate species C. thermophila. We analyzed morphology, growth kinetics, and transcriptomic profiles of flagellates cultivated at low (23°C) and elevated (34°C) temperature. When maintained at high temperature, they grew significantly faster, became shorter, with genes involved in sugar metabolism and mitochondrial stress protection significantly upregulated. Comparison with another thermoresistant monoxenous trypanosomatid, Leptomonas seymouri, revealed dramatic differences in transcription profiles of the two species with only few genes showing the same expression pattern. This disparity illustrates differences in the biology of these two parasites and distinct mechanisms of their thermotolerance, a prerequisite for living in warm-blooded vertebrates.


Assuntos
Crithidia/genética , Insetos/genética , Animais , Fenômenos Bioquímicos/genética , Expressão Gênica/genética , Temperatura , Transcriptoma/genética , Regulação para Cima/genética
16.
Sci Rep ; 6: 23704, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-27021793

RESUMO

Many high-quality genomes are available for dixenous (two hosts) trypanosomatid species of the genera Trypanosoma, Leishmania, and Phytomonas, but only fragmentary information is available for monoxenous (single-host) trypanosomatids. In trypanosomatids, monoxeny is ancestral to dixeny, thus it is anticipated that the genome sequences of the key monoxenous parasites will be instrumental for both understanding the origin of parasitism and the evolution of dixeny. Here, we present a high-quality genome for Leptomonas pyrrhocoris, which is closely related to the dixenous genus Leishmania. The L. pyrrhocoris genome (30.4 Mbp in 60 scaffolds) encodes 10,148 genes. Using the L. pyrrhocoris genome, we pinpointed genes gained in Leishmania. Among those genes, 20 genes with unknown function had expression patterns in the Leishmania mexicana life cycle suggesting their involvement in virulence. By combining differential expression data for L. mexicana, L. major and Leptomonas seymouri, we have identified several additional proteins potentially involved in virulence, including SpoU methylase and U3 small nucleolar ribonucleoprotein IMP3. The population genetics of L. pyrrhocoris was also addressed by sequencing thirteen strains of different geographic origin, allowing the identification of 1,318 genes under positive selection. This set of genes was significantly enriched in components of the cytoskeleton and the flagellum.


Assuntos
Evolução Molecular , Genoma de Protozoário/genética , Leishmania/genética , Trypanosomatina/genética , Metabolismo Energético/genética , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Genes de Protozoários/genética , Leishmania/classificação , Leishmania/patogenicidade , Filogenia , Especificidade da Espécie , Trypanosomatina/classificação , Trypanosomatina/patogenicidade , Virulência/genética
17.
J Eukaryot Microbiol ; 63(5): 657-78, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27009761

RESUMO

Comparison of the genomes of free-living Bodo saltans and those of parasitic trypanosomatids reveals that the transition from a free-living to a parasitic life style has resulted in the loss of approximately 50% of protein-coding genes. Despite this dramatic reduction in genome size, B. saltans and trypanosomatids still share a significant number of common metabolic traits: glycosomes; a unique set of the pyrimidine biosynthetic pathway genes; an ATP-PFK which is homologous to the bacterial PPi -PFKs rather than to the canonical eukaryotic ATP-PFKs; an alternative oxidase; three phosphoglycerate kinases and two GAPDH isoenzymes; a pyruvate kinase regulated by fructose-2,6-bisphosphate; trypanothione as a substitute for glutathione; synthesis of fatty acids via a unique set of elongase enzymes; and a mitochondrial acetate:succinate coenzyme A transferase. B. saltans has lost the capacity to synthesize ubiquinone. Among genes that are present in B. saltans and lost in all trypanosomatids are those involved in the degradation of mureine, tryptophan and lysine. Novel acquisitions of trypanosomatids are components of pentose sugar metabolism, pteridine reductase and bromodomain-factor proteins. In addition, only the subfamily Leishmaniinae has acquired a gene for catalase and the capacity to convert diaminopimelic acid to lysine.


Assuntos
Kinetoplastida/genética , Kinetoplastida/metabolismo , Trypanosomatina/genética , Trypanosomatina/metabolismo , Aminoácidos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Metabolismo dos Carboidratos , Coenzimas/metabolismo , Dolicóis/metabolismo , Ergosterol/biossíntese , Eucariotos/genética , Eucariotos/metabolismo , Ácido Fólico/metabolismo , Genes de Protozoários/genética , Gluconeogênese , Glicólise , Kinetoplastida/enzimologia , Metabolismo dos Lipídeos , Ácido Mevalônico/metabolismo , Microcorpos/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Oxirredutases/metabolismo , Via de Pentose Fosfato , Peroxissomos/metabolismo , Fosfolipídeos/metabolismo , Poliaminas/metabolismo , Prenilação de Proteína , Proteínas de Protozoários/genética , Purinas/biossíntese , Purinas/metabolismo , Pirimidinas/biossíntese , Pirimidinas/metabolismo , Espécies Reativas de Oxigênio , Trypanosomatina/enzimologia , Ubiquinona/metabolismo , Ureia/metabolismo , Vitaminas/metabolismo
18.
Nucleic Acids Res ; 43(Database issue): D637-44, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25300491

RESUMO

The metabolic network of a cell represents the catabolic and anabolic reactions that interconvert small molecules (metabolites) through the activity of enzymes, transporters and non-catalyzed chemical reactions. Our understanding of individual metabolic networks is increasing as we learn more about the enzymes that are active in particular cells under particular conditions and as technologies advance to allow detailed measurements of the cellular metabolome. Metabolic network databases are of increasing importance in allowing us to contextualise data sets emerging from transcriptomic, proteomic and metabolomic experiments. Here we present a dynamic database, TrypanoCyc (http://www.metexplore.fr/trypanocyc/), which describes the generic and condition-specific metabolic network of Trypanosoma brucei, a parasitic protozoan responsible for human and animal African trypanosomiasis. In addition to enabling navigation through the BioCyc-based TrypanoCyc interface, we have also implemented a network-based representation of the information through MetExplore, yielding a novel environment in which to visualise the metabolism of this important parasite.


Assuntos
Bases de Dados de Compostos Químicos , Trypanosoma brucei brucei/metabolismo , Mineração de Dados , Internet , Redes e Vias Metabólicas , Proteômica , Trypanosoma brucei brucei/genética
19.
Open Biol ; 4(10)2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25339693

RESUMO

Although protein S (PROS1) and growth arrest-specific protein 6 (GAS6) proteins are homologous with a high degree of structural similarity, they are functionally different. The objectives of this study were to identify the evolutionary origins from which these functional differences arose. Bioinformatics methods were used to estimate the evolutionary divergence time and to detect the amino acid residues under functional divergence between GAS6 and PROS1. The properties of these residues were analysed in the light of their three-dimensional structures, such as their stability effects, the identification of electrostatic patches and the identification potential protein-protein interaction. The divergence between GAS6 and PROS1 probably occurred during the whole-genome duplications in vertebrates. A total of 78 amino acid sites were identified to be under functional divergence. One of these sites, Asn463, is involved in N-glycosylation in GAS6, but is mutated in PROS1, preventing this post-translational modification. Sites experiencing functional divergence tend to express a greater diversity of stabilizing/destabilizing effects than sites that do not experience such functional divergence. Three electrostatic patches in the LG1/LG2 domains were found to differ between GAS6 and PROS1. Finally, a surface responsible for protein-protein interactions was identified. These results may help researchers to analyse disease-causing mutations in the light of evolutionary and structural constraints, and link genetic pathology to clinical phenotypes.


Assuntos
Proteínas Sanguíneas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Algoritmos , Aminoácidos/química , Animais , Sítios de Ligação , Ciona intestinalis/metabolismo , Biologia Computacional , Bases de Dados de Proteínas , Evolução Molecular , Glicosilação , Humanos , Mutação , Fenótipo , Filogenia , Ligação Proteica , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Proteína S , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Eletricidade Estática
20.
Int J Parasitol ; 41(9): 915-24, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21722646

RESUMO

The completion of the genome project for Naegleria gruberi provides a unique insight into the metabolic capacities of an organism, for which there is an almost complete lack of experimental data. The metabolism of Naegleria seems to be extremely versatile, as can be expected for a free-living amoeboflagellate, but although considered to be fully aerobic, its genome also predicts important anaerobic traits. Other predictions are that carbohydrates are oxidised to carbon dioxide and water when oxygen is not limiting and that in the absence of oxygen the end-products will be succinate, acetate and minor quantities of ethanol and D-lactate. The hybrid mitochondrion/hydrogenosome has both cytochromes and an [Fe] hydrogenase, but seems to lack pyruvate-ferredoxin oxidoreductase. Genomic information also provides the possibility to identify drugs with a possible mode of action in the fatal primary amoebic meningoencephalitis caused by the closely related opportunistic pathogen Naegleria fowleri.


Assuntos
Naegleria/metabolismo , Antiprotozoários/farmacologia , Humanos , Naegleria/efeitos dos fármacos , Naegleria/genética , Infecções por Protozoários/parasitologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...